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Abstract: The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative 

platform for drug discovery. This review provides an overview of the various model systems 

and technical advances in imaging and image analyses that strengthen the PDD platform. 

In PDD screens, compounds of therapeutic value are identified based on the phenotypic pertur-

bations produced irrespective of target(s) or mechanism of action. In this article, examples of 

phenotypic changes that can be detected and quantified with relative ease in a cell-based setup 

are discussed. In addition, a higher order of PDD screening setup using small animal models is 

also explored. As PDD screens integrate physiology and multiple signaling mechanisms during 

the screening process, the identified hits have higher biomedical applicability. Taken together, 

this review highlights the advantages gained by adopting a PDD approach in drug discovery. 

Such a PDD platform can complement target-based systems that are currently in practice to 

accelerate drug discovery.
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Phenotype-based drug discovery
Phenotype-based drug discovery (PDD) is not a new approach in drug discovery; how-

ever, it has seen a recent re-emergence as an alternative platform of drug discovery. 

PDD was the preclinical strategy used to identify the first generations of drugs.1,2 

Nonetheless, the recent advancement of molecular biology techniques and the comple-

tion of the human genome sequence allowed drug screening to be performed directly 

on target genes/proteins, thereby sidelining PDD from the mainstream drug discovery 

program.1 As the name implies, PDD evaluates observable phenotypic changes in a 

cell, a tissue or an entire organism. The phenotypical changes can then be used to 

identify small molecules and other modulators for a disease or disorder. Generally, the 

PDD approach takes the desired phenotype or a characteristic phenotype associated 

with a disease or disorder and uses an in vitro or in vivo model to conduct a screen 

(Figure 1). The overall goal is to identify a lead compound that rescues or ameliorates 

the disease phenotype without necessarily knowing the target or mechanism (Figure 1). 

Such screens have been successfully performed for identifying leads selectively killing 

cancer cells3 or alleviating various disorders.4–7 This approach allows new targets and 

signaling pathways to be identified3 and, most importantly, decreases false-positive 

hits. PDD screens also allow the possibility to identify cell type-specific features. 

A recent study using the PDD approach identified acquired a vulnerability of cancer 

cells to macropinocytosis.3 The entire PDD approach in this study was designed with 

the concept that oncogenic transformation results in the cell acquiring new characteristic 

features that may not necessarily be associated with its pathophysiology. When these 

Correspondence: Gayathri Chandrasekar; 
Satish S Kitambi
Department of Microbiology, Tumor and 
Cell Biology, Nobels vag 16, Karolinska 
institutet, Solna 17177, Sweden
Tel +46 85 248 3421
email gayathri.chandrasekar.janebjer@
ki.se; satish.kitambi@ki.se

Journal name: Drug Design, Development and Therapy
Article Designation: Review
Year: 2017
Volume: 11
Running head verso: Szabo et al
Running head recto: Cell and small animal models for phenotypic drug discovery
DOI: http://dx.doi.org/10.2147/DDDT.S129447

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/DDDT.S129447
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:gayathri.chandrasekar.janebjer@ki.se
mailto:gayathri.chandrasekar.janebjer@ki.se
mailto:satish.kitambi@ki.se


Drug Design, Development and Therapy 2017:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1958

Szabo et al

characteristics are identified, they can be exploited in order 

to design a therapeutic approach that selectively targets 

that cell.3 As the entire cell/tissue or organism’s physiology 

is taken into account, various parameters, such as tissue 

cross talk, absorption, distribution, metabolism, elimination 

(ADME) parameters and micro- and macroenvironmental 

influences synergistically participate in the lead identification. 

Such an approach ensures that the identified hit is physiologi-

cally relevant, with a high potential for clinical translation. An 

example of this is seen with the identification of fexinidazole 

and SCYX-7158 for use against African trypanosomiassis.8,9 

The PDD approach operates by assuming the presented 

problem (disease or disorder) as a whole and focuses on alle-

viating the condition without initially considering the target 

or mechanism of action. Therefore, new or multiple targets 

or mechanisms can be identified through this approach, 

making it highly desirable not only for new drug discovery 

but also for drug repurposing programs.4,5 Furthermore, the 

advancement in the screening models has ensured PDD as a 

serious approach in drug discovery. PDD programs involve 

endpoints of using simple cytotoxicity-based screens,3 

coculture3 and organoids,10 to animal model11-based dis-

ease modeling, making it a very flexible and robust setup. 

Advances in imaging, analysis software and target decon-

volution techniques offer a strong reason for selecting this 

approach in drug discovery programs. Disease-relevant 

assays can now be modeled using TALENs,6 CRISPR/Cas9,12 

iPSC13 and organoid14 in vitro and in vivo, thus making this 

approach very effective. The availability of various cell-

based models, organoids and small animal models with the 

advances made in imaging and computational technology 

makes the re-emergence of PDD a powerful approach in 

identifying leads with greater medical significance.

Limitations to PDD
One of the main drawbacks of PDD is that the relevant 

target(s) identification is relatively slow. This poses a seri-

ous limitation when a disease-rescuing or disease-modifying 

effect with a small molecule is observed. The success of a 

PDD screen depends on the relevance of the disease model 

employed in addition to the target deconvolution strategy. 

The robustness of the model dictates the scalability of the 

Figure 1 Outline of a PDD pipeline.
Notes: A PDD design pipeline consisting of collected information from various diseases and disorders, selecting small-molecule library and in vitro or in vivo models to 
perform unbiased screening followed by analysis and quantification of the phenotype. The identified hits are then tested on preclinical and disease animal models before 
moving toward clinical trials and applications.
Abbreviation: PDD, phenotype-based drug discovery.
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screening setup with weak or poorly defined phenotypes 

producing considerable numbers of false hits. The evalu-

ation of the structure–activity relationship is often compli-

cated by the physiological process such as metabolism and 

elimination in a cell- or animal-based PDD setup. However, 

various advances in genomics/proteomics, target identi-

fication and screen deconvolution strategies have been of 

assistance in revisiting PDD as a promising alternative for 

drug discovery.

Technical advances for PDD 
screening
Recent technical advances in microscopy, imaging, image 

analysis software, automation and array of in vitro and 

in vivo models have allowed the re-emergence of PDD as 

an effective platform for drug discovery. Fortunately, there 

are numerous methods such as flow cytometry,15,16 laser 

scanning fluorescence,17 microfluidics18 and electrophysiol-

ogy methodologies19 readily available for conducting high-

throughput PDD screening. A simple cell painting approach20 

allows extensive morphological profiling, with over 1,500 

morphological features to be extracted and analyzed, making it 

a very effective tool for developing a multiplexed PDD setup. 

Other software programs such as cellXpress,21 BIOCAT,22 

ThunderSTORM23 and CellAnimation2 are examples of soft-

ware that can be used for data visualization and analysis to 

discover or quantify cell-specific phenotypes. Various analysis 

software programs also provide a flexibility to set up a tailor-

made analysis script (Supplementary material) for quantifying 

one specific feature of cell behavior, such as migration. The 

analysis of cell migration is not always straightforward and 

can generate noise. Programming scripts can be written to 

detect simple single-cell migration from point A to point B 

(Supplementary material and Figure 2A–D) or cytoplasmic 

extensions during migration (Figure 2E–H) or morphologi-

cal changes during cell extension (Figure 2I–L). All these 

observations can easily be quantified in terms of distance 

moved or morphological changes produced in the entire cell 

or its nucleus during motion (Figure 2M). Such image-based 

quantification can also be conducted in a three-dimensional 

(3D) culture setup aiding in identification and statistical quan-

tification of unique morphological changes associated with 

the phenotype or upon compound administration.1,24

The rise of organoids and small animal models for PDD 

setup has given way to technological advancement in the 

field of imaging and image analysis. An example of this is 

the development of light sheet microscopy25,26 and optical 

emission computed tomography (optical-ECT)27 that allow 

rapid 3D imaging of live or fixed tissue. A combination of 

such imaging systems with protocols for tissue clearance has 

been useful in deep tissue imaging in live and fixed animal 

models.25,26,28 Such an approach also ensures 3D visualiza-

tion for rapid reconstruction and analysis of tissues, thereby 

providing detailed information into the pathophysiology 

and disease progression.27–29 In PDD studies using animal 

xenograft models, optical-ECT and light sheet microscopy 

have allowed deep tissue imaging of tumor progression along 

with the analysis of microvasculature and necrosis studies.29,30 

Image analysis software for such in vivo throughput setup 

has also undergone rapid advances, allowing the quantifica-

tion of endpoints ranging from ex vivo analysis,31 single-cell 

behavior in vivo32,33 to behavior of an entire organism.34,35 

Much of the available analysis software is open source and 

is designed to create tailor-made scripts that accommodate 

new and innovative PDD endpoint assay development and 

analysis. Therefore, much of this open-source software36 can 

be modified to suit our PDD assay needs. One interesting 

use of this software could be the quantification of intricate 

features such as cell area and nuclear area (Figure 3) that can 

be quantified by recording external (Figure 3A–H) or inter-

nal (Figure 3I–P) morphological changes at one time point 

(Figure 3Q) or over a period of time (Figure 3R–S). These 

advances in hardware and software tools offer considerable 

support for PDD screening.

Cell-based models for PDD
Cell-based screening has been a frequently adopted approach 

for PDD screens as it allows for the rapid testing of a large 

number of compounds. Early PDD programs were straight-

forward cell-based screens, for example, cell cytotoxicity or 

colorimetric screen, for the selective killing or inhibition of 

proliferation of cancer cells.37–39 The development of different 

culturing conditions for various cell types allows PDD screen-

ing to be performed on cell line panels, making it feasible to 

identify small molecules with selectivity toward one cell type 

to another and develop early assay algorithms such as COM-

PARE based on the recorded activity.40,41 The recent boost to 

cell-based PDD setup came from the development of instru-

mentation and analysis algorithms. These developments made 

it possible to look at simple cell morphology (Figure 4A) 

or intricate details such as metaphase plate (Figure 4B) and 

cells in anaphase (Figure 4C) to study various aspects of cell 

division. It also enables the performance of time-lapse analy-

sis of cell migration (Figure 4D), stimulus-driven intricate 

cellular responses such as ruffling (Figure 4E), macropino-

cytosis (Figure 4F), exocytosis (Figure 4G), cell retraction 
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(Figure 4H), necrosis (Figure 4I), cytoplasmic extension 

(Figure 4J), blebbing (Figure 4K) or accumulation of lipid 

droplets (Figure 4L). Such a morphology-based screening 

approach resulted in identifying glioblastoma cell-specific 

intricate features such as micropinocytosis.3 Glioblastoma 

multiforme tumor-derived cell-based PDD assay identified 

the cells’ vulnerability to macropinocytosis, thereby paving 

the way toward the development of a new class of therapeutic 

compounds, Vacquinols.3

In addition to the cell-based approach, the development 

of organoid models that represent a rudimentary organ has 

further boosted the PDD screening approach. Organoid 

models for the cerebral cortex, intestine, optic cup, pituitary 

gland, kidney, liver, pancreas, neural tube, stomach, prostrate, 

breast, heart and lung allow for organ-specific disease model-

ing for PDD.42–50 Organoid models introduce sophistication 

in the PDD screening setup, whereby multiple parameters 

such as developmental signaling processes, physiological 

and functional activity and tissue-specific unique target can 

be identified.

Small animal models for PDD
In vivo evaluation is a key component in the entire pipeline 

for drug discovery, implying that small animal model-based 

Figure 2 Cell-based phenotypic assay measuring migration dynamics of different cells for PDD.
Notes: (A–D) Cellular and nuclear morphology changes of migrating cells (shown by dotted lines) with arrow indicating the direction of migration and the nuclear position 
visualized by oval shape on the arrow. (E–H) Sequential extension of cytoplasmic processes at the leading edge of cell migration (arrowhead) and retraction of processes 
at the lagging end (arrow) of migrating cells. The direction of migration is indicated by a black arrow. (I–L) Unidirectional gradual extension of cells with the one edge 
(arrowhead) showing gradual migration and the other edge firmly attached. The direction of migration is shown by a black arrow. (M) Changes to cellular and nuclear area 
during HF cell migration over a period of 15 h. Scale bar: 25 µm; brightfield images of cells overlaid with Hoechst-stained nucleus shown in blue.
Abbreviations: HF, human fibroblast; PDD, phenotype-based drug discovery.
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Figure 3 Phenotype-based drug discovery endpoints of intracellular features.
Notes: (A–H) Brightfield (A–G) and Hoechst staining of the nucleus (B–H) images of selected time points showing morphological changes in neuroblastoma over a period 
of 7 h. (I–P) Brightfield (I–O) and nuclear staining (J–P) of colon carcinoma cells over a period of 7 h. (Q) Graph showing the overall difference between cells and nuclear 
area of neuroblastoma and colon carcinoma cells. (R) Relative changes to cell and nuclear area over a period of 7 h in colon carcinoma cells. (S) Measurement of the number 
of vacuoles and the area they occupy in colon carcinoma cells over a period of 6 h. Scale bar: 25 µm; brightfield images of cells and Hoechst-stained nucleus are shown.

evaluation offers a very convenient setup to perform PDD. 

Testing in an in vivo system contributes to the evaluation 

of multiple signaling mechanisms and tissue cross talk that 

is not available with cell-based system. This is still the only 

available platform for safety and efficacy studies with a 

higher chance of biomedical applicability to human use. 

A small molecule identified in an in vivo system has a higher 

chance of having bioactivity and clinical relevance. Using an 
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Figure 4 Cell-based phenotypic screening endpoints for phenotype-based drug discovery.
Notes: (A) Cell morphology endpoint assay setup showing a brightfield image of cells with nuclei stained in blue. (B–C) Cell proliferation endpoint assay showing brightfield 
images of metaphase cells with metaphase plate (arrow) (B) and nuclei staining of cells in anaphase (arrow) (C). (D) Migrating cells in an adherent fibroblast culture with 
arrowhead pointing at the nucleus and the direction of migration shown by an arrow. (E) Cell ruffling phenotype showing ruffles on cells (arrows). (F) Phenotype of cells 
with accumulation of vacuoles (arrows). (G) Morphology screening assay endpoint showing extracellular vesicles (arrows). (H) Cell retraction assay showing rounding cells 
(arrowhead) and thinning cellular processes (arrow). (I) Necrotic cell assay endpoint showing bulged and broken cytoplasm (arrow) and rounded nucleus (arrowhead). 
(J) extracellular projection of cells (arrow) in a morphology-based assay. (K) Cell blebbing (arrow) on rounded up cells. (L) Staining of lipid droplets inside a cell with Bodipy 
(green), nuclei (arrow head; blue) and tubulin (red). Scale bar: 25 µm; brightfield images of cells and Hoechst-stained nucleus in blue or white in panel (C) are shown.
Abbreviations: Cyt, cytoplasm; Nuc, nucleus.

in vivo PDD platform offers the evaluation of compounds in 

a physiological context, that is, examining its effect on the 

entire animal model in addition to its effect on target cell/

organ/tissue becomes feasible. Valuable information such as 

dose-specific efficacy and compound toxicity can be obtained 

with precision and accuracy through this approach, aiding in 

selecting a good lead compound. Additionally, this method 

offers the possibility of standardizing the time window of 

application, that is, evaluation of multitude of endpoints that 

cannot be assessed otherwise. A variety of animal models are 

available for PDD, as simple as Saccharomyces cerevisiae51 

or Dictyostelium discoideum,52 invertebrates such as Artemia 

salina,53 Drosophila melanogaster (fly)54 and Caenorhabditis 

elegans (worms),55 lower vertebrates such as Danio rerio 

(zebrafish) and Oryzias latipes (medaka fish),11,56 Xenopus 

leavis,57 Gallus gallus,58 to mammalian models such as 

Tupaia belangeri,59 Mus musculus and Rattus norvegicus 

that have varying degrees of similarity to human beings and 

bring their own advantages to drug development. The order 

in which all these models are mentioned represents the order 

of increase in complexity and decrease in throughput. The 

availability of the whole-genome sequence,60 along with a 

variety of omics studies and genetic engineering tools such as 

CRISPR/Cas-961 on these models, provides a variety of tools 

that can be used to refine and enrich PDD development. Such 

tools not only allow for modeling various disease-associated 

genes and gene mutation(s) but also define various endpoints 

in a PDD assay. Establishing endpoints such as host pathogen 

interaction/infection, central nervous system (CNS) disorders 

such as epilepsy, onset of behavior disorder and aging can 

contribute to the development of powerful assays for PDD-

based drug discovery. The availability of a variety of small 

animal models provides significant advantages in choosing 

the most appropriate model to study a specific biological 

process, disease pathology, developmental defects or disor-

ders for conducting PDD. Although the throughput decreases 
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when an in vivo system is applied in PDD, a clear advantage 

in clinical relevance is achieved.

Small invertebrates
Small invertebrates such as flies and worms, with their ease 

of handling and lower order of complexity, have become 

ideal for high-throughput PDD screens. Given its small 

size (~1 mm), with 65% of human disease-associated genes 

having C. elegans orthologs, various genetics and PDD 

screening platforms have been developed for modeling 

cancer, diabetes, CNS disorders and microbial infection62–65 

and identified various leads66–68 with relevance to human 

diseases. Fly models demonstrate a slightly higher degree 

of complexity than worms.54 They are also small in size 

(~2 mm), have over 70% human disease-associated gene 

orthologs with highly conserved cellular and physiological 

processes allowing the modeling of various disorders of CNS, 

cardiac and metabolic conditions, including cancer.54,69,70 

Various PDD screens using this model have identified leads 

for disorders of CNS, metabolism and cancer.54,69,70 The avail-

ability of genetic and biochemical tools allows cell-, tissue- or 

organ-specific PDD to be developed with these models with 

relative ease. Both the models have a variety of wild-type 

and genetically engineered strains available, allowing for the 

potential development of mutant panel-based PDD.

Chicken model
Chickens serve as a very good juvenile and perinatal animal 

model for PDD. Their low cost, self-contained and rapid 

development, relatively large size and availability of large 

number of techniques are all features offered by this model. 

Although this model may not be the first choice for con-

ducting high-throughput screens, the use of this model in 

medium- to low-throughput screens has been performed in 

order to understand the function of various amino acids and 

metabolites.58,71,72 Various behavior PDD endpoints, espe-

cially in the area of stress-related disorders such as insomnia 

and other sleeping disorders, depression and hyperactive 

behavior, have previously been carried out.71,72 A practical 

advantage can be gained in the PDD setup because chickens 

require a small quantity of drugs. A well-understood behavior 

regimen in this model has allowed its use in PDD programs 

to identify sedatives, hypnotics and excitatory molecules.73

Xenopus model
Xenopus models have been widely used in embryology, tera-

tology and toxicology field.74 A number of phenotype-based 

assays such as Frog Embryo Teratogenesis Assay Xenopus 

(FETAX) assay74 have been carried out in order to assess 

the effect of small molecules on early development. This 

model is the only tetrapod vertebrate without in utero or in 

ovo development allowing PDD to be carried out on them. 

Various medium- to low-throughput PDD screens have been 

carried out using this model in order to identify small mol-

ecules affecting melanocyte development and migration,75 

angiogenesis and lymph angiogenesis.76 Indeed, this model, 

with its relatively small size oocyte, and well-evolved genetic 

and biochemical tools could prove valuable in setting up a 

good platform to perform PDD screens and investigate the 

target and underlying mechanistic action.

Rodent models
Rodents are mammalian models that have greatly established 

themselves as the mainstream model for preclinical evalua-

tion. The relative ease with which they can be handled, along 

with molecular and genetic tools that are available, allows 

for a thorough investigation of lead molecules. The same 

features also make them an ideal candidate for conducting 

PDD screens. The development of “humanized” mice models 

has offered more confidence into drug toxicity and safety 

assessment studies before clinical translation.77,78 Rodent 

models have been highly sought-after for PDD using behavior 

assessment. Various PDD assays such as the elevated plus 

maze,79 light/dark box80 and four-plate test81 have proven 

to be highly beneficial in the discovery and assessment of 

many lead molecules for anxiety and other mood disorders.81 

Humanized mouse xenograft models such as XactMice82 

have overcome the limitation posed by cell culture or mouse 

xenograft models and allowed the modeling and examining 

of the cross talk between the human immune system and 

the tumor microenvironment, paving the way to test various 

human cancer immunotherapies. Although rodent models 

offer enormous advantages over other models in lead iden-

tification and evaluation, performing high-throughput PDD 

is costly and cumbersome.

Teleost models
Teleost models, such as zebrafish and medaka, have attracted 

a great deal of attention in recent years in drug screening. 

Among them zebrafish is carving a unique niche as the 

vertebrate model for PDD, as phenotype scoring can be 

performed with great ease because of rapid external devel-

opment and optical transparency of the embryos. PDD 

screens performed on zebrafish have led to the identification 

of a number of lead compounds of therapeutic potential, 

for example, identification of a novel compound having a 
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retinal vasculature specific effect,11 or larval susceptibility 

to infection with vibrio vulnificus,83 or notochord lesions.84 

In addition, various behavior screens have identified 

antipsychotic-like compounds or compounds suppressing 

long QT syndrome.85,86 Zebrafish has also been used as a 

successful xenograft PDD model to evaluate various anti-

cancer compounds,3 in neurogenesis87 and CNS defects, 

leading toward identification of leads with high biomedical 

relevance. In addition to being a vertebrate model, zebrafish 

(and medaka) offer the development of various endpoint 

PDD assays. Its rapid external development allows the ease 

of standardizing the time window of compound exposure and 

phenotype scoring. Various precision PDD screens looking 

at developmental defects (Figure 5A), cancer cells’ xeno-

graft survival (Figure 5B) or the development of brain ven-

tricles (Figure 5C), lipid consumption and edema formation 

(Figure 5D and E), vasculature and cancer cell proliferation 

and migration (Figure 5F) can be developed with relative 

ease to be used in a low- to medium-throughput PDD setup. 

One important reason for zebrafish being favored as an ani-

mal model to carry out PDD is that it has .75% of human 

disease-associated orthologs with various tissue and organ 

similarity to that of humans. There is a very high correlation 

between the pharmacological effects seen in humans with 

this model including in areas of infectious disease, cancer, 

CNS, cardiovascular and various metabolic conditions.88,89 

The availability of a large collection of various disease gene 

mutant strains; advanced molecular, biochemical and genetic 

tools in addition to its small size (1–5 mm); rapid external 

and early transparent development; and the possibility to 

obtain large quantities of embryos makes this model an ideal 

PDD screening platform. Several PDD screens based on 

morphology,90–92 disease phenotype rescue,85,93–95 infection,96 

antitoxin resistance and behavior86,97 demonstrate the ver-

satility of this model to be used in therapeutic programs to 

discover small molecules with the potential to be translated 

to clinics.

Conclusion and future direction
PDD offers an unbiased evaluation setup in the process 

of drug discovery. It lacks prior knowledge of the target, 

allowing opportunities for the identification of new target(s) 

Figure 5 Phenotype-based drug discovery endpoints for zebrafish-based screening.
Notes: (A) Zebrafish developmental assay showing a brightfield image of embryos with developmental deformities. (B) Zebrafish-based brain tumor xenograft assay with 
the transplanted cells stained in red and embryos’ cell nuclei stained with 4′,6-diamidino-2-phenylindole staining. (C) Zebrafish brain ventricle development assay with a red 
dye injected into brain ventricle. (D, E) Zebrafish-based larval assay showing normally developing larvae compared to larvae with edema in yolk (arrow) and heart (asterisk). 
(F) Transgenic zebrafish expressing green fluorescent protein in blood vessels and with transplanted cancer cells labeled with a red dye. The transplanted site is shown with 
a yellow circle and an arrow. Scale bars: 100 µm in panel (A), 250 µm in panels (B) and (C), and 250 µm in panels (D–F).
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and pathways of therapeutic importance. In addition to 

providing an approximate solution to a problem that cannot 

be solved precisely, PDD screening also allows engage-

ments of multiple targets and physiological mechanism 

that synergistically participate, resulting in the phenotype. 

This results in a higher possibility for biomedical translation 

and clinical applicability. The recent advances in imaging 

system(s), automated screening and endpoint quantification 

programs allow us to identify and document precise patterns 

of morphological perturbations. Moreover, identification 

of similarities and differences in these patterns allows us 

to characterize compounds and diseases/phenotypes. These 

technical advances reinforce PDD as a powerful setup for 

drug discovery. Various in vitro and in vivo models offer 

the possibility to model disease phenotypes and conduct 

therapeutic screens in large numbers to alleviate that con-

dition and accelerate drug discovery. The emergence of a 

coculture system, organoids and organotypic culture system 

offers a robust setup to carry out PDD screening. Taken 

together, PDD screens greatly contribute to allowing us to 

create tailor-made assays to identify drugs for our unmet 

medical needs.
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